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SELF-SIMILAR PROPAGATION REGIMES

OF A NONSTATIONARY HIGH-TEMPERATURE

CONVECTIVE JET IN THE ADIABATIC ATMOSPHERE

UDC 532.529.2:536.24 + 551.511.6A. N. Vul’fson1 and O. O. Borodin2

An integrated model of a nonstationary high-temperature convective jet that includes the uni-
versal dependence of the upper boundary of the convective front on the power of a point heat
source is proposed. A class of self-similar solutions corresponding to heat sources whose power
changes in time according to the power and exponential laws is considered. Calculation results
are compared with known experimental vertical-velocity and temperature profiles on the jet axis.

Introduction. A theoretical investigation of nonstationary convective jets has been initiated fairly
recently [1]. In [1], the use of the approximation of a vertical boundary layer and the Kármán–Pohlhausen
method allowed one to write amplitude equations for the vertical velocity and temperature on the jet axis.
To close the system of equations, the heuristic evolutionary differential equation for the jet radius was used.
A similar approach was applied in [2]. Within the framework of these models, a class of self-similar solutions
corresponding to a point heat source whose power changes in time according to a power law was constructed
in [1, 2]. Calculation results were compared with experimental data.

Another hydrodynamic description of the nonstationary convective jet is given in [3]. The Prandtl
approach is used as a basis of the model. To determinate the plane (upper) boundary of the jet, which
corresponds to the base of a cone, the universal equation of convective-front propagation [3, 4], which relates
the jet height to the time dependence of the power of a point heat source, was used. In [3, 4], it was shown
that in the given model, there are also self-similar regimes corresponding to heat sources whose power changes
in time according to a power law. It is important that the universal equation of convective-front propagation
allows one to construct a self-similar solution corresponding to an exponential heat source, which can be
considered an envelope of the family of power solutions. The constructed solution is a self-similar solution of
the second kind [5], because it cannot be obtained within the framework of the theory of dimensions.

In the present work, the integrated hydrodynamic model [3] is refined owing to a high-temperature
generalization and the use of experimental horizontal temperature and vertical-velocity profiles [6].

1. The Problem of a Turbulent Jet above a Point Heat Source. We consider the problem of
propagation of an axisymmetrical convective jet in the adiabatic atmosphere above a point heat source. Let t
be the time, (r, ϕ, z) be the cylindrical coordinate system whose z axis is directed opposite to the acceleration
of gravity g.
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To describe the jet propagation, the “deep”-convection equations of an ideal gas [7], which generalize
the Boussinesq model owing to the partial allowance for air compressibility, are used. Let Θa = const be the
static value of the potential temperature of dry air in the quiet atmosphere, and Θ be the local potential air
temperature.3

Following [7], we introduce the local dimensionless potential temperature θ = (Θ−Θa)/Θa.
The dimensionless density of dry quiet air in the adiabatic atmosphere ρ̄a is set by the relations
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where Rd and cp are, respectively, the gas constant and the thermal capacity of dry air at constant pressure;
Ta is the air temperature in the adiabatic atmosphere.

The flow in an axisymmetrical nonstationary convective jet is considered in the approximation of a
vertical boundary layer [8]:
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(1.1)

Here u and w is the velocity component along the r and z axes, respectively, and νw and νθ are the turbulent-
exchange coefficients of the vertical velocity and the dimensionless potential temperature, respectively.

System (1.1) is considered in the domain V = {0 6 r < ∞, 0 6 ϕ 6 2π, 0 6 z 6 ∞}, where the
infinite upper boundary is at a distance equal to the height of the adiabatic atmosphere. For ρ̄a = 1, the
“deep”-convection equations (1.1) become the Boussinesq equations.

The presence of the total kinetic and potential energies and the entropy in the set of “deep”-convection
equations [7], i.e., the existence of integrals of the form
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allows one to consider that the functions ρ̄aw
2, ρ̄agθz, and ρ̄aθ belong to the functional space L1(V ) (see [9]).

The integrability of the functions over the unlimited domain V results in the condition of their damping at
indefinitely remote boundaries.

Taking into account that the medium is not disturbed, we set the no-flow and flow-attenuation condi-
tions at the upper boundary of the domains in the form
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At the lateral surface, we adopt the following no-flow and flow-attenuation conditions:
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3For an ideal gas, the potential temperature Θ is determined by the relation Θ = T (p/pn)−Rd/cp , where T is the local
gas temperature, p is the local pressure, pn is the constant normal gas pressure at the underlying surface, which is
approximately equal to 1 atm, and Rd and cp are, respectively, the gas constant and the thermal capacity at constant
pressure.
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At the lower boundary of the domain, we set a point nonstationary heat source and a zero shock source, i.e.,
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1
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1
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Here P0(t) = 0 and S0(t) > 0 are the powers of the point shock and heat source and δ(r) is the Dirac
delta-function.

As the initial condition for t = t0, we adopt the undisturbed-atmosphere state
w(r, z, t0) = 0, θ(r, z, t0) = 0. (1.5)

Relations (1.1)–(1.5) form a closed set of equations.
2. The Integrated Model of a Convective Jet above a Point Heat Source. To construct an

approximate solution of system (1.1), the Kármán–Pohlhausen integrated method [8] is used. It is assumed
that the unknown functions in the field of ascending motion 0 < r < R(z, t) can be approximated by relations
with separable variables:
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Here w̃(z, t) and θ̃(z, t) are, respectively, the vertical velocity and the dimensionless potential temperature on
the jet axis and fw and fθ are specified functions.

For comparison of the given and existing models [1, 2], we use the exponential approximations of the
parameter profiles in accordance with known experimental data [6]:

fw(ξ) = exp (−λwξ2), fθ(ξ) = exp (−λθξ2), ξ =
√
ρ̄a r/R. (2.2)

Substituting (2.1) and (2.2) into Eqs. (1.1) and integrating the resulting equations over the transverse
cross-sectional area of the jet, we obtain
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where αg = λw/λθ is a constant factor. Equations (2.3) should be supplemented by the boundary conditions
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To close system (2.3), (2.4), it is necessary to use the equation for the jet radius R. Following [3], we
assume that the convective thermic is approximated by the conic surface and the head part, the form of the
thermic remaining constant at any moment of time (Fig. 1).

According to the Prandtl hypothesis, the following law of linear extension of the jet above a point
source, which are adopted in the models from [3, 10], is used:

R(z, t) = αRz, 0 6 z 6 h(t). (2.5)

Here αR is the angle jet-expansion coefficient whose magnitude varies from 0.1 to 0.2 (see, e.g., [10]) and h(t)
is the height of the upper boundary of the conic surface of the jet. Within the framework of the adopted
formulation of the problem, the motion in the region z > h(t) is not considered.

As an equation that describes the propagation of the upper boundary of a convective jet from a heat
source in the neutral atmosphere, we use the relation [3, 4]
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In subsequent numerical experiments, it will be assumed that, according to [6], we have λw = 96α2
R,

λθ = 0/74λw and, hence, αg = λw/λθ = 1.35. Here λ2
0 = 9.04·10−2, which corresponds, in order of magnitude,

to the experimental values of λ2
0 = (2.22–4.56) · 10−2 from [11].

Relations (2.3)–(2.6) form a closed system of the integrated model of a vertical convective jet.
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Fig. 1. Contour of a developing convective jet corresponding to a point heat source and its approximation.

3. Quasistationary Equations as the Asymptotic Behavior of the Solution near a Source.
Taking into account the presence of the singularity of the solution at the coordinate origin, which is connected
with the effect of the point heat source, it is expedient to describe the asymptotic solution of the problem of
a convective jet near a source. According to [1, 2], the asymptotic behavior of the solution is described by the
quasistationary equations (2.3), in which there are no time derivatives.

Let the power of the reduced heat source S̃ be given by the relation S̃(t) = λwS0(t)/(πk2). The
corresponding parameters of the quasistationary jet have the form

w̃a(z, t) = ((3/2)αggS̃(t))1/3α
−2/3
R z−1/3,

(3.1)

θ̃a(z, t) = ((3/2)αggS̃(t))−1/3S̃(t)α−4/3
R z−5/3, R(z, t) = αRz,

where w̃a and θ̃a are, respectively, the vertical velocity and the dimensionless potential temperature on the
axis of the quasistationary jet in the adiabatic atmosphere.

It is noteworthy that relations (3.1) are of independent interest, because in the case S̃(t) = const, they
correspond to the point solution of the problem of stationary-jet propagation in the neutral atmosphere. The
functional dependences (3.1) were obtained for the first time by Zel’dovich [12] within the framework of the
similarity theory. In [10], relations of the type (3.1) are found as solutions of the integrated model of a jet.

Let h(t) be the height of a convective jet which corresponds to a heat source of power S0(t) and which is
calculated according to (2.6). We introduce the dimensionless variable η = z/h(t). Then, the quasistationary
solution (3.1) can be presented in the form
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respectively.
For comparison with experimental data, the general solution of the nonstationary problem is referred

to the quasistationary solution (3.1)–(3.3).
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4. Self-Similar Regimes of Convective-Front Propagation. For a number of specially specified
amplitudes of the heat source, the corresponding regimes of convective-front propagation can be obtained
within the framework of the theory of dimensions without using the universal relation (2.6). We show that
Eq. (2.6) not only includes all the known self-similar dependences as particular solutions, but also allows one
to construct new self-similar regimes.

We consider the convection caused by a power heat source: t0 = 0, S0(t) = Qqqt
q−1, q > 0, and

Qq = const. From (2.6) follows the self-similar dependence
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. (4.1)

Let us consider the convection caused by an exponential heat source: t0 = −∞ and S0(t) =
Q∞q exp (qt) (Q∞ = const). From (2.6) follows
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. (4.2)

Relation (4.2) is self-similar, although it cannot be obtained from the theory of dimensions. It should be
interpreted as an envelope of the family of power solutions (4.1) as t0 → −∞ and q → +∞.

5. Development of Self-Similar Jets above a Point Heat Source. The integrated model of
a nonstationary jet and corresponding self-similar solutions for point heat sources whose power changes in
time under a power law were obtained for the first time in [1, 2]. We show that in the case of point heat
sources, the self-similar regimes (4.1) and (4.2) also generate corresponding classes of self-similar solutions for
the integrated jet model proposed.

Let η = z/h(t) is a dimensionless parameter. For 0 < z < h(t), the self-similar solution of system
(2.3)–(2.6) can be searched for in the form
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For power sources (4.1), substitution of (5.1) in system (2.3) for 0 < η < 1 leads to a system of ordinary
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According to (2.4), the boundary conditions of system (5.1) take the form
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Similar relations can be written for the exponential source (4.2) as well. Here the coefficients in the
corresponding equations (5.2) and (5.3) are obtained by means of the limit transition as q →∞. In the case
of the exponential source (4.2), the solution is a self-similar solution of the second kind [5], because it cannot
be obtained on the basis of the theory of dimensions.

We note that in the domain 10 < q < ∞, the coefficients (5.2) and (5.3) can be considered almost
constant. Therefore, all the self-similar jets with quite large values of q have almost identical velocity and
temperatures profiles corresponding to the exponential source.
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Fig. 2. Distributions of the normalized vertical velocities (a) and the potential temperature (b) along the z̃ axis:
solid curves refer to calculations by means of the proposed model and dashed curves refer to calculations according
to the model [2]; curves 1 and 2 refer to the data for two series of measurements in [2], in which the heat sources
differ by the method of packing the combustibles.

6. Numerical Description of Self-Similar Regimes of Jet Development. Taking into account
the asymptotic behavior of the convective jet for η � 1, according to [1, 2], for representation of the results,
we use the functions

w̃/w̃a = w∗/w
s
∗ = ϕw(η), lim

η→0
ϕw(η) = 1, θ̃/θ̃a = θ∗/θ

s
∗ = ϕθ(η), lim
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ϕθ(η) = 1.

According to [1, 2], we introduce the dimensionless parameter
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z
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.

Using relation (3.1), one can show that, for the power heat sources (4.1), we have
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4
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q − 1
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(q + 2
3q
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.

As an example, the numerical solution of the self-similar equations for q = 4 and αR = 0.1 is considered.
Calculation results obtained for the normalized vertical velocities and the potential temperature are compared
with experimental data and calculation results obtained by means of the model from [2] in Fig. 2.

Conclusions. The results of the present study show that the proposed integrated model of a convective
jet that includes the universal equation of propagation of the upper boundary of a convective front contains
a class of self-similar solutions corresponding to power and exponential heat sources. The calculation results
agree well with known experimental data.
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